Model Selection for Poisson Regression via Association Rules Analysis
نویسندگان
چکیده
This study integrates association rules analysis, a methodology for selecting potential interactions, with Poisson regression modeling. Though typically ignored in conventional Poisson regression, interactions are very common in practice. However, selecting a Poisson regression model when many main effects and interactions are involved is problematic. In this study, we develop a model selection framework to address this problem. Specifically, we focus on building an optimal Poisson regression model by (1) discretizing the response and quantitative attributes into levels; (2) exploring via association rules analysis combinations of input variables that have a significant impact on response; (3) selecting potential (lowand high-order) interactions; (4) converting these potential interactions into new variables; and (5) selecting variables from all the input variables and the newly created variables (interactions) to build the optimal Poisson regression model. Our model selection procedure is the first approach to enable a global search for potential interactions and the first to establish the optimal combination of main effects and interaction effects in the Poisson regression model. A real-life example is given for illustration. It is shown that the proposed method finds the optimal model including important interactions that cannot be found by other existing methods.
منابع مشابه
کاربرد مدل رگرسیون پواسنی تعمیم یافته در تحلیل دادههای باروری زنان روستایی استان فارس
Background & objectives: statistical modeling explicates the observed changes in data by means of mathematics equations. In cases that dependent variable is count, Poisson model is applied. If Poisson model is not applicable in a specific situation, it is better to apply the generalized Poisson model. So, our emphasis in this study is to notice the data structure, introducing the generalized Po...
متن کاملSelection of multinomial logit models via association rules analysis
In this research, we propose a novel approach for a multinomial logit model selection procedure: specifically, we apply association rules analysis to identifying potential interactions for multinomial logit modeling. Interaction effects are very common in reality, but conventional multinomial logit model selection methods typically ignore them. This is especially true for higher-order interacti...
متن کاملIdentifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملComparison between Efficiency of Poisson Regression Model and Negative Binomial Regression in the Analysis of Factors Affecting Mortality from Cardiovascular Diseases in Yazd Province in 2017
Introduction: Despite the advances in cardiovascular diseases, death caused by these diseases is still considered as the leading cause of mortality. In this study, some of the effective factors on the deaths caused by cardiovascular diseases were investigated Methods: This cross-sectional analytical study investigated the efficacy of Poisson regression models and negative binomial regres...
متن کامل